To truly understand how the Internet and Web are organized and function requires knowledge of mathematics and computation theory. Mathematical and Algorithmic Foundations of the Internet introduces the concepts and methods upon which computer networks rely and explores their applications to the Internet and Web. The book offers a unique approach to mathematical and algorithmic concepts, demonstrating their universality by presenting ideas and examples from various fields, including literature, history, and art. Progressing from fundamental concepts to more specific topics and applications, the text covers computational complexity and randomness, networks and graphs, parallel and distributed computing, and search engines. While the mathematical treatment is rigorous, it is presented at a level that can be grasped by readers with an elementary mathematical background. The authors also present a lighter side to this complex subject by illustrating how many of the mathematical concepts have counterparts in everyday life. The book provides in-depth coverage of the mathematical prerequisites and assembles a complete presentation of how computer networks function. It is a useful resource for anyone interested in the inner functioning, design, and organization of the Internet.First, in the history of man divination has been more important than one may suspect. The ancient populations ... This essay was brought to the attention of computer scientists by Jeffrey Shallit, see bibliographic notes. 1This chapter is the mostanbsp;...

Title | : | Mathematical and Algorithmic Foundations of the Internet |

Author | : | Fabrizio Luccio, Linda Pagli, Graham Steel |

Publisher | : | CRC Press - 2011-07-06 |

You must register with us as either a Registered User before you can Download this Book. You'll be greeted by a simple sign-up page.

Once you have finished the sign-up process, you will be redirected to your download Book page.

`1.`Register a free 1 month Trial Account.`2.`Download as many books as you like (Personal use)`3.`Cancel the membership at any time if not satisfied.